
Fast Obstacle Detection using Flow/Depth Constraint

Abstract

The early recognition of potentially harmful traffic
situations is an important goal of vision based
driver assistance systems. Pedestrians, in
particular children, are highly endangered in inner
city traffic. Within the DaimlerChrysler UTA
(Urban Traffic Assistance) project, we are using
stereo vision and motion analysis in order to
manage those situations. The flow/depth constraint
combines both methods in an elegant way and
leads to a robust and powerful detection scheme.

1 Introduction

Within the DaimlerChrysler UTA (Urban Traffic
Assistance) project, different vision modules for
inner city traffic have been developed [1,2]. This
includes fast stereo vision for Stop&Go, traffic sign
and light recognition as well as pedestrian
recognition and tracking. It is the goal of our
current investigations to add collision avoidance
capabilities to the existing system. In particular, we

intend to recognize situations that implicate a high
risk of accidents with children running across the
road. A city roller coming from the side, a child
looming between parking cars as shown in Fig. 1.1
indicate such dangerous situations. A warning as
well as an emergency reaction have to take place
instantaneously in order to prevent accidents with
serious injuries.

Relevant objects must be detected and classified in
real-time from the moving car. For obstacle
recognition, we generally use stereo analysis
followed by a classification stage.

Stereo vision delivers three-dimensional
measurements. A height threshold is applied in
order to distinguish between ground and obstacle
features. Points above ground are grouped to
objects. Detected objects are tracked over time to
estimate their motion.

Although very powerful, stereo analysis has three
drawbacks with respect to the application that we
have in mind. First, the grouping process tends to
merge objects which are close to each other, e.g. a
pedestrian in front of a vehicle or a child behind a
car. Secondly, the height threshold implies the risk
to miss small obstacles which are close to the
ground. Thirdly, motion information included in
the sequence is exploited for the detected objects
only.

Motion analysis, on the other hand, allows to
estimate the motion of any pixel based on the
analysis over time and thus detection of any
moving object.
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Fig. 1.1 A child behind a car



In vehicles, a precise recovery of the ego-motion is
necessary in order to distinguish between static and
moving objects. Unfortunately, the ego-motion
estimation is a difficult problem which requires
considerable computational power and usually
lacks from robustness. Neither the presence of
optical flow automatically indicates a moving
object, nor a flow equals zero does mean a zero
risk. Depending on depth, a collision could take
place in any case.

A proper combination of both techniques promises
the optimal exploitation of the available
information in space and time. In this paper, we
present an elegant method which uses the fact that
stereo disparity and optical flow are connected via
real-world depth. The so called “flow/depth
constraint” allows to test each motion vector
directly against the stereo disparity to detect
moving objects. The detection works within a few
image frames with very low computational cost.

In chapter 2. we describe the used systems for
stereo and motion analysis. The fusion of stereo
and motion data by means of the flow/depth
constraint is presented in chapter 3.

2 Stereo and Motion

2.1 Stereo Vision

Our stereo analysis [3] is based on a correlation-
based approach. In order to reach real-time
performance on a standard PC, design decisions
need to be drawn carefully.

First of all, we use the sum-of-squared (SSD) or
sum-of-absolute (SAD) differences criterion
instead of expensive cross correlation to find the
optimal fit along the epipolar line. Wrong results
due to different mean and variance of the image
pairs can be avoided if gain and shutter of the
cameras are appropriately controlled.

Secondly, in order to speed up the computation, we
use a multi-resolution approach in combination
with an interest operator. The idea is to find

correspondences on a coarse level that can be
recursively refined. First, a gaussian pyramid is
constructed for the left and right stereo image.
Areas with sufficient contrast are extracted by
means of a fast vertical Prewitt edge detector.

Pixels with sufficient gradient are marked, from
which a binary pyramid is constructed. A pixel (i,j)
at level n is marked if one of its 4 corresponding
pixels at level n-1 is set. A non-maximum
suppression is applied to the gradient image in
order to further speed up the processing. In this
case, we find about 1100 attractive points at
pyramid level zero (original image level), 700 at
level one and 400 at level 2 on typical image
sequences. Only those correlation windows with
the central pixel marked in these interest images are
considered during the disparity estimation
procedure.

Depending on the application, the correlation
process starts at level one or two of the pyramid. If
D is the maximum searched disparity at level zero,
it reduces to nD )2/(  at level n. At level 2 this
corresponds to a saving of computational burden of
about 90% compared to a direct computation at
level zero. Furthermore, smaller correlation
windows can be used at higher levels which again
accelerates the computation.

The result of this correlation is then transferred to
the next lower level. Here, only a fine adjustment

Fig. 2.1: Color encoded disparity image generated
by the correlation approach. Red signals close,
green means far.



has to be performed within a small horizontal
search area of +/- 1 pixel. This process is repeated
until the final level is reached. At this level,
subpixel accuracy is achieved by fitting a parabolic
curve through the computed correlation
coefficients.

The price we have to pay for this fast algorithm is
that mismatches in the first computed level
propagate down through the pyramid and lead to
serious errors. Since the quality of a found match
cannot be judged by the measured SSD or SAD, we
compute the normalized cross correlation
coefficient for the best matches at the highest
correlation level and eliminate bad matches from
further investigations. In addition, a left-right check
can be applied to the disparity images on the
different pyramid levels. In case of ambiguities, the
best match or the match with the smaller disparity
is selected. The latter strategy avoids the erroneous
detection of close obstacles caused by periodic
structures.

Usually, we start at level 2 (resolution 91x64
pixels) and allow a maximum disparity of 60 pixels
corresponding to a minimum distance of 4 meters.
In this case, the total analysis including pyramid
construction runs at about 30 milliseconds on a 700
MHz Pentium III on an average. Starting at higher
levels causes problems in our field of applications,
since relevant structures may be lost.

Fig. 2.1 shows the disparity image that we get by
this scheme for the situation of Fig. 1.1.

2.2 Motion Analysis

Stereo object detection usually is done by
clustering disparity features to gather 3D objects.
As mentioned in the introduction, this method is
not sufficient if the distance between two objects is
lower than a predefined threshold. Objects with a
close distance will merge to a single object even if
velocities vary. For a fast detection of moving
objects, regardless size and distance, it is necessary
to measure motion within the images directly.

Based on performance comparison of a number of
optical flow techniques, emphasizing the accuracy
and density of measurements on realistic image
sequences [6], we are using a basic differential
(gradient based) optical flow method after Lukas
and Kanade [13].

The gradient based method assumes that gray
values of moving objects do not change over time
which is usually the case in a wide range of our
environmental scenes. The computation of the
optical flow is illustrated by Fig. 2.2. which is
leading to the one dimensional continuity equation

(2.1) where the gray value shift u∆ is given as the
ratio between the temporal and spatial derivatives

tg  and ug .

0=⋅∆+ ut gug    (2.1)
0=⋅∆+⋅∆+ vut gvgug (2.2)

Accordingly, equation (2.2) can be derived for the
two dimensional case. The two dimensional optical
flow ( u∆ , v∆ ) is given by the least squares
solution of (2.2) within a small image region. As an
example, the resulting optical flow field is shown
in Fig. 2.3.

Of course, many different methods for optical flow
computation like region-based matching [8],
energy-based [9] and phase based [10] methods are
available. The basic gradient method can also be

Fig. 2.3: computed gradient flow field



improved by using either second order derivatives
or smoothness constraints for the flow field [11].

However, none of the above methods is capable to
compute dense optical flow fields under real-time
conditions. Usually, special hardware and parallel
processing is needed in order to reach acceptable
frame rates whereas the basic gradient flow can be
computed in real-time on a standard PC.
Furthermore, we will show that in combination
with stereo the basic method is more than sufficient
for our detection problem.

3 Fusion of Stereo and Motion

Both methods, stereo and motion, have certain
disadvantages for object detection. As described
above, stereo extracts depth information without
correlation over time. The optical flow on the other
hand is able to detect even small gray value
changes providing the possibility for early
detection of moving objects. But with a moving
camera, it lacks from suppression of background-
flow without depth information.

In order to use the information of both systems in
an optimal way, we suggest a sensor fusion
method. We will show that with the proposed

fusion of stereo and motion both methods
supplement their shortcomings leading to a robust
detection of arbitrary moving objects.

3.1 Flow/Depth constraint

Let us assume a purely longitudinal moving camera
and a stationary environment for the moment. For
the transformations between the 3D world
coordinate system ( zyx ,, ) and the corresponding
2D image coordinate system ( vu, ), we are using a
pinhole camera model with the focal length f and

us as the size of a sensor element of the camera
chip. With the pinhole camera model and the stereo
base line  b , we can derive the disparity D  and
the optical flow ( vu ��, ) from triangulation leading to
the following equations:
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Both, disparity and optical flow, depend on the
real-world depth z . Therefore, the optical flow
field can be computed from depth information and
vice versa for stationary objects.

However, computation of the real-world depth is
not necessary in our case. Switching variables for
vehicle speed sz ∆=�  and the horizontal and
vertical components of the optical flow uFu =� ,

vFv =� , the depth factor is eliminated by building
the quotient between the optical flow and the
disparity. Separately applied to the horizontal and
vertical components of the optical flow, this leads
to the following constraints:
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Equations (3.2) can be illustrated by inclined planes
over the image region ( vu, ). The gradient of the
planes is determined by the stereo base line b , the
size of a sensor element of the camera chip us , the
focal length f  and the vehicle speed s∆
[m/frame]. Fig. 3.1 shows this plane for the
horizontal component of equation 3.2.

g

u

t

tt ∆+
g∆

u∆

Fig. 2.2: gradient based optical flow



Using our in-vehicle stereo camera system, the
camera parameters f , us  and b  usually remain
constant while only the speed varies over time.
Therefore, the inclination of the plane changes as a
function of the vehicle’s speed only.

The quotient values for pixels belonging to
stationary objects will match the plane. If the
quotient does not match the value of the plane, we
have to consider a moving object at this image
position. Fig. 3.2 shows four consecutive images of
a test sequence. All objects within the scene are
stationary except one vehicle which backs into the
street from the right while the camera is moving
forward. The flow/depth quotient is computed for
one line in the image center only. The
corresponding values are displayed in blue. The
value of the quotient plane is displayed in red. If
stationary objects are present, the quotient
measurements follow the predefined value of the
plane. Quotient values corresponding to the moving
object vary distinctively from the plane.

3.2 Quotient Noise

As we see from Fig. 3.2, there is some
measurement noise from the underlying stereo and
optical flow within the flow/depth quotient which
complicates segmentation of moving objects. But
since the measurement noise for the disparity and
optical flow preprocessing is well known, we can
derive the maximum error of the quotient and use it
as a threshold function for the segmentation.

From
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we get the following function for the maximum
quotient error for the horizontal and vertical flow,
respectively:
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where Q  is the value of the flow/depth plane and
*D  is the current measurement value for the

disparity. FD ∆∆ , are the known maximum errors
for the disparity and optical flow preprocessing.
Together with equation (3.2) the  maximum error
of the horizontal quotient value is given by:
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Except u , equation (3.5) is the same for the
vertical quotient. Fig. 3.3 illustrates the maximum
allowed deviation from the plane, which basically
is the absolute value of equation (3.5). We will use
this as the threshold function.

Segmentation of moving objects is a three step
process:
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Fig. 3.1: flow/depth quotient plane

Fig. 3.2: deviation of flow/depth value (blue)
from the quotient plane (red) if a moving object



1. Compute the horizontal and vertical quotients
from the optical flow and the disparity for
every pixel (u,v) for which depth and motion
information is present.

2. Compare the computed quotient values with
the reference values from the flow/depth plane
at position (u,v) multiplied with the known
vehicle speed s∆ .

3. Tag image position (u,v) as “moving object” if
the difference between reference value and
quotient is more than Q∆  in at least one
direction.

3.3 Stabilization

So far, pure longitudinal camera motion was
assumed. We use the above method within a
demonstrator vehicle where the camera is mainly
moving in longitudinal direction. Additionally,
there are rotational components about all three
axes.

There is a distinct flow pattern corresponding to
rotation and translation along every camera axes.
As the camera movement is a combination of
camera translation and rotation, the optical flow is
a linear combination of independent components.

In order to use the flow/depth constraint as
described above, we have to stabilize the image so

that all rotational components are zero and only the
translational flow remains.

Our stabilization is estimating self-motion using a
matched filter method [12]. Each filter is tuned to
one flow pattern generated by either camera pitch,
yaw or roll according rotation for the three camera
axes. We assume that the flow preprocessing stage
provides the optical flow as an input to the matched
filters. The elimination of the rotational flow
components is done in three steps:

1. Compute the filter output from the weighted
sum of the scalar product between the optical
flow and the matched filter pattern at each
image position. This results in a single scalar
which is the rotational speed for this axis.

2. An estimate for the rotational flow field is
given by the product of the matched filter
pattern and the rotational speed from the first
step.

3. The compensated flow is given by the
difference between the measured optical flow
and the estimated rotational flow field from
step 2.

The method is very well adapted to our
stabilization task. Based on the optical flow which
we take from the preprocessing stage there is only
few extra computational power needed for the
stabilization within every image cycle. The
matched filter patterns for all three axes do not
change over time, so they can be computed only
once when the system is initialized. If we assume,
that the optical flow is present for n pixels within
the image, we only need 2n MUL, 2n-1 SUM and 1
DIV operation to compute the rotational speed
from step 1. The flow prediction from step 2 needs
2n MUL and the compensation from step 3 needs
2n SUB operations.

3.4 Results

The system has been tested on several inner city
image sequences with pedestrians involved. As an
example, one of these scenes is shown in Fig. 3.4.
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Fig. 3.3: maximum flow/depth quotient noise



The sequence has been taken from our in-vehicle
stereo camera system. The vehicle speed is 18 km/h
and the slight pitch and yaw movement of the
camera has been compensated by the described
matched filter method.

The result of the flow/depth constraint is overlaid
onto the image. As can be seen, the algorithm is
very sensitive to movements that don’t match the
motion of a static environment with respect to the
moving camera, while background noise is very
low.

The robust and fast detection can only be achieved
because our fusion method is using the information
from the stereo and the optical flow subsystems in
an optimal way. The head of the child is detected
within only three image frames after its first
appearance behind the front window of the car.
From stereo or optical flow alone this wouldn’t be
possible.

The detection is independent of size or shape of the
object. Since everything is done on a small pixel
based neighborhood, the detection even works for
non-rigid motion from pedestrians where motion
varies for different parts of the body. However, in
Fig. 3.4, the motion of legs and arms with respect
to their size is fairly high and therefore out of the
measuring range of our current motion analysis.

The flow/depth constraint also works on areas
where the flow is zero. Due to the fact that our
camera is moving, a flow equals zero does not
automatically mean a zero risk. The subimages in
Fig. 3.4 have been cropped from the original video
at a fixed position. Even though the child is moving
with respect to world coordinates, there is almost
zero optical flow for the child’s head since its
position within the image stays nearly constant. But
as one can see there is no difference in detection
even under this extreme conditions.

The current system works for low vehicle speed.
Due to our optical flow algorithm, the range for
valid image motion is restricted to ± 2 pixel/frame.
With the current camera and a video rate of 25
frames/s, this restricts the maximum vehicle speed

to 25km/h. As flow range is limited, the used
stabilization is optimal for small rotational
velocities only.

In order to overcome this restrictions, we are
working on a multi-scale approach for optical flow
which will extend the current measurement range.

4 Summary

The early detection of dangerous situations in
urban traffic is a serious challenge for image
understanding systems. Up to now, we had stereo
vision to detect obstacles in front of the car only.

The presented fusion of stereo and motion analysis
is a new powerful scheme that allows early
detection of moving obstacles even if they are

Fig. 3.4: detection of a child within an image
sequence taken from a moving camera



partially occluded and non-rigid. The disparity
information is already available in our vehicle and
the simple motion analysis runs in real-time, too.
Since the fusion algorithm has to compare the
flow/depth quotient against a threshold function at
distinct points only, it is computationally highly
efficient. Its current limitation to low vehicle speed
due to the used optical flow measurement shall be
overcome by means of a multi-scale approach.
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